
Storage Access Characteristics of Computational
Science Applications

Philip Carns,∗ Kevin Harms,† William Allcock,† Charles Bacon,† Samuel Lang,∗ Robert Latham,∗ and Robert Ross∗
∗Mathematics and Computer Science Division, †Argonne Leadership Computing Facility

Argonne National Laboratory
Argonne, IL 60439

∗{carns,slang,robl,robr}@mcs.anl.gov, †{harms,allcock,bacon}@alcf.anl.gov

Abstract—Computational science applications are driving a
demand for increasingly powerful storage systems. While many
techniques are available for capturing the I/O behavior of
individual application trial runs and specific components of
the storage system, continuous characterization of a production
system remains a daunting challenge for systems with hundreds
of thousands of compute cores and multiple petabytes of storage.
As a result, these storage systems are often designed without
a clear understanding of the diverse computational science
workloads they will support.

In this study, we outline a holistic methodology for scalable,
systemwide I/O characterization that combines storage device
instrumentation and static file system analysis with a new
mechanism for capturing detailed, application-level behavior. We
demonstrate the effectiveness of our methodology by performing
a multilevel, two-month study of Intrepid, a 557-teraflop IBM
Blue Gene/P system. During that time, we captured application-
level I/O characterizations from 6,481 unique jobs spanning 38
science and engineering projects with up to 163,840 processes
per job. We also captured patterns of I/O activity in over 8
petabytes of block device traffic and summarized the contents of
file systems containing over 191 million files.

From this collection of data we are able to quantify systemwide
trends such as how application behavior changes with job size, the
“burstiness” of the storage system, and the change in file system
contents over time. We also identify the top ten storage users
by application domain and investigate how their I/O strategies
relate to I/O performance. One of these applications is then
selected as a case study in I/O tuning based on integrated I/O
characterization. We then use the results of our study to highlight
trends that will affect the design of future storage systems, and
we identify opportunities for improvement in I/O characterization
methodology.

I. INTRODUCTION

Computational science applications are driving a demand for
increasingly powerful storage systems. This situation is true
especially on leadership-class systems, such as the 557 TFlop
IBM Blue Gene/P at Argonne National Laboratory, where the
storage system must meet the concurrent I/O requirements of
hundreds of thousands of compute elements [1]. Hardware
architecture, file systems, and middleware all play a key role
in providing high-performance I/O capabilities in this environ-
ment. These components cannot be considered in isolation,
however. The efficiency of the storage system is ultimately
determined by the nature of the data stored on it and how
applications choose to access that data. Understanding storage

access characteristics of computational science applications
is therefore a critical—and challenging—aspect of storage
optimization.

A number of methods exist for analyzing application access
characteristics and their effect on storage. Synthetic I/O bench-
marks are easily instrumented and parameterized, but in many
cases they fail to accurately reflect the behavior of scientific
applications [2], [3], [4]. Application-based benchmarks are
more likely to reflect actual production behavior, but the
available benchmarks don’t represent the variety of scientific
domains and applications seen on leadership-class machines,
each with unique access characteristics and data requirements.
I/O tracing at the application, network, or storage level is an-
other technique that has been successful in analysis of general-
purpose network file systems [5], [6]. However, these tracing
techniques are impractical for capturing the immense volume
of I/O activity on leadership-class computer systems because
of the overhead. Such systems utilize high-performance net-
works, generate workloads with concurrent I/O from thousands
of processes, and are highly sensitive to any perturbation in
performance.

As a result, there exist key gaps in our understanding of the
storage access characteristics of computational science appli-
cations on leadership-class systems. To address this deficiency,
we have developed an application-level I/O characterization
tool, known as Darshan [7], that captures relevant I/O be-
havior at production scale with negligable overhead. We have
deployed Darshan in conjunction with existing tools for block
device monitoring and static file system anslysis in an effort
to answer the following questions for a large-scale production
system:

• What applications are running, what interfaces are they
using, and who are the biggest I/O producers and con-
sumers?

• How busy is the I/O system, how many files are being
created of what size, and how “bursty” is I/O?

• What I/O interfaces and strategies are employed by the
top I/O producers and consumers? How successful are
they in attaining high I/O efficiency? Why?

• Can we use this data to actually help improve application
I/O on Intrepid?

To answer these questions, we performed a long-running,
multilevel I/O study of the Intrepid Blue Gene/P system at
Argonne National Laboratory. The study spanned two months
of production activity from January to March 2010. During
that time we recorded three aspects of I/O behavior: stor-
age device activity, file system contents, and application I/O
characteristics. These three sources of information can be
combined to present a comprehensive view of storage access
characteristics and their relationships.

Using this data, we highlight the characteristics of ten of
the most I/O-intensive projects running on the system. We also
revisit one of these projects after completion of the study to
show how integrated I/O characterization can be used to guide
tuning and improve the performance of INCITE production
applications.

The remainder of the paper is organized as follows. Sec-
tion II describes the target system and the tools used to
analyze its I/O activity. Sections III, IV, and V investigate the
questions about I/O activity listed above. Section VI discusses
whether we can use the data to tune an application based
on our findings. Section VII summarizes related work, and
Section VIII presents conclusions and avenues for future work.

II. TARGET SYSTEM AND METHODOLOGY

This study was conducted on Intrepid, the IBM Blue Gene/P
(BG/P) system at the Argonne Leadership Computing Facility
(ALCF) at Argonne National Laboratory. The ALCF makes
large allocations available to the computational science com-
munity via the Innovative and Novel Computational Impact on
Theory and Experiment (INCITE) program [8]. Systems such
as Intrepid therefore host a diverse set of applications from
scientific domains including climate, physics, combustion, and
Earth sciences.

Intrepid consists of a 163,840-core production system with
80 TiB of RAM and a peak performance of 557 TFlops.
The primary high-performance storage system employs 128
file servers running both PVFS [1] and GPFS [9], with a
separate, smaller home directory volume. Data is stored on 16
DataDirect Networks S2A9900 SANs. The storage system has
a total capacity of 5.2 PiB and a peak I/O rate of approximately
78 GiB/s. The architecture and scalability of this storage
system have been analyzed in detail in a previous study [1].

Intrepid groups compute nodes (CNs) into partitions of sizes
512, 1,024, 2,048, 8,192, 16,384, 32,768, and 40,960 nodes.
All jobs must select one of these partition sizes, regardless of
the number of nodes that will be used. Each set of 64 compute
nodes utilizes a single, dedicated I/O forwarding node (ION).
This ION provides a single 10 gigabit Ethernet link to storage
that is shared by the CNs.

A. Characterizing storage device activity

On the storage side of the system, the DataDirect Networks
SANs used by PVFS and GPFS are divided into sets of LUNs
that are presented to each of the 128 file servers. Activity
for both file systems was captured by observing traffic at
the block device level. We recorded high-level characteristics

such as bandwidth, amount of data read and written, percent
utilization, and average response times.

Behavior was observed by using the iostat command line
tool included with the Sysstat collection of utilities [10]. Iostat
can report statistics for each block device on regular intervals.
We developed a small set of wrappers (known as iostat-mon)
to monitor iostat data on each file server. Data was collected
every 60 seconds, logged in a compact format, and then post-
processed to produce aggregate summaries. All local disk
activity was filtered out to eliminate noise from operating
system activity. This data was collected continuously over the
entire period from Januray 23 to March 26, but four days of
data were lost in February because of an administrative error.

B. Characterizing file system contents

The block device instrumentation described above captures
all data movement, but it does not describe the nature of the
persistent data that is retained on the system. To capture this
information, we used the fsstats [11] tool. Fsstats analyzes
entire directory hierarchies to collect a snapshot of static
characteristics, such as file sizes, file ages, capacity, and a
variety of namespace attributes. We ran the fsstats tool at the
beginning and end of the study on both primary file systems.
GPFS was measured on January 23 and March 25, while PVFS
was measured on January 27 and March 31. This approach
allowed us to observe the change in file system contents over
the course of the study.

C. Characterizing application behavior

The most detailed level of characterization was per-
formed by analyzing application-level access characteristics.
Application-level characterization is critical because it cap-
tures I/O access patterns before they are altered by high level
libraries or file systems. It also ensures that system behavior
can be correlated with the specific job that triggered it.
Application-level I/O characterization has traditionally been a
challenge for arbitrary production workloads at scale, however.
Tracing and logging each I/O operation become expensive
(in terms of both overhead and storage space) at scale,
while approaches that rely on statistical sampling may fail
to capture critical behavior. We have developed a tool called
Darshan [7] in order to bridge this gap. Darshan captures
lossless information about each file opened by the application.
Rather than trace all operation parameters, however, Darshan
captures key characteristics that can be processed and stored
in a compact format. Darshan instruments POSIX, MPI-IO,
Parallel netCDF, and HDF5 functions in order to collect
a variety of information. Examples include access patterns,
access sizes, time spent performing I/O operations, operation
counters, alignment, and datatype usage.

The data that Darshan collects is recorded in a bounded
(approximately 2 MiB maximum) amount of memory on each
MPI process. If this memory is exhausted, then Darshan falls
back to recording coarser-grained information, but we have yet
to observe this corner case in practice. Darshan performs no
communication or I/O while the job is executing. It delays

 0

 1

 2

 3

 4

 5

 6

 7

1 shared

1024 shared

1 unique

1024 unique

1 shared

1024 shared

1 unique

1024 unique

1 shared

1024 shared

1 unique

1024 unique

1 shared

1024 shared

1 unique

1024 unique

1 shared

1024 shared

1 unique

1024 unique

T
im

e
(s

ec
s)

Write
Gzip

Reduce

64K32K16K8K4K

Fig. 1. Darshan output time for varying BG/P job sizes.

such activity until the job is shutting down. At that time
Darshan performs three steps. First it identifies files that were
shared across processes and reduces the data for those files into
an aggregate record using scalable MPI collective operations.
Each process then compresses the remaining data in parallel
using Zlib. The compressed data is written in parallel to a
single binary data file. Figure 1 shows the Darshan output
time for various job sizes on Intrepid as measured in previous
work [7]. This figure shows four cases for each job size: a
single shared file, 1,024 shared files, one file per process,
and 1,024 files per process. The largest case demonstrates that
the Darshan shutdown process can be performed in less than
7 seconds even for jobs with 65,336 processes that opened
67 million files [7]. This time is not likely to be noticeable
because jobs at this scale take several minutes to boot and
shut down. In addition, we have measured the overhead per
file system operation to be less than 0.05%, even for operations
that read only a single byte of data.

Darshan was installed on Intrepid via modifications to the
default MPI compilers. Users who built MPI applications using
these default compilers were therefore automatically included
in the study. Darshan did not achieve complete coverage of
all applications, however. Some applications were compiled
prior to the Darshan deployment on January 14, 2010. Other
applications either did not use MPI at all or used custom build
scripts that had not been modified to link in Darshan. Users
do have the option of explicitly disabling Darshan at compile
time or run time, though this option is rarely chosen.

To analyze the resulting data from Darshan, we postpro-
cessed all log files and loaded the resulting data into a
unified SQL database. We also utilized a graphical summary
tool included with Darshan to generate summary reports for
particular jobs of interest. This same tool is available to users
and system administrators; it enables immediate feedback
on the I/O behavior of any production job, in many cases
eliminating the need to explicitly instrument or rerun jobs in
order to troubleshoot I/O performance problems.

D. Performance metrics

One important metric for applications is aggregate I/O
bandwidth. For parallel I/O benchmarks we typically calculate

TABLE I
PERFORMANCE METRICS FOR IOR EXAMPLES

Example Actual Estimated
MiB/s MiB/s MiB/s/CN

IOR N-1 write 4021.01 4026.91 3.93
IOR N-1 read 6050.73 6067.70 5.93
IOR N-N write 3957.88 4050.39 3.96
IOR N-N read 5877.41 5883.73 5.75

this by dividing the amount of data moved by the time of the
slowest MPI process, with some coordination ensuring that I/O
overlapped. In this work we are observing real applications
running in production, and these applications may not have
the same coordination seen in I/O benchmarks. Additionally,
because the applications are running across a range of job
sizes, it is useful for comparison purposes to examine perfor-
mance relative to job size, rather than as an absolute value.
We introduce a generic metric for read and write performance
that can be derived from the Darshan statistics of unmodified
applications and scaled across a variety of job sizes.

Darshan records independent statistics for each file accessed
by the application, including the number of bytes moved,
cumulative time spent in I/O operations such as read() and
write(), and cumulative time spent in metadata operations
such as open() and stat(). The aggregate I/O bandwidth
can be estimated by dividing the total amount of data trans-
ferred by the amount of I/O time consumed in the slowest
MPI process. To make comparisons across jobs of different
sizes, we divide the aggregate performance by the number of
compute nodes allocated to the job. The result is a MiB per
second per compute node (MiB/s/CN) metric, calculated as
follows:

MiB/s/CN =

(∑n−1
rank=0(bytesr + bytesw)

maxn−1
rank=0(tmd + tr + tw)

)
/Ncn.

In this equation, n represents the number of MPI processes,
while Ncn represents the number of compute nodes. Intrepid
has four cores per compute node, so those two numbers seldom
match. Here bytesr and bytesw represent the number of bytes
read and written by the MPI process, respectively, while tmd,
tr, and tw represent time spent in metadata, read, and write
operations, respectively. A slight variation is used to account
for shared files because, in that scenario, Darshan combines
statistics from all MPI processes into a single record and, in
doing so, loses track of which process was the slowest.1 For
shared files we therefore estimate the I/O time as the elapsed
time between the beginning of the first open() call and the
end of the last I/O operation on the file.

To verify the accuracy of this approach, we used the IOR
benchmark. The results are shown in Table I. All IOR jobs
used 4,096 processes and transferred a total of 1 TiB of data to
or from GPFS. Our examples used both shared files and unique
files per process (notated as N-1 and N-N, respectively). The
aggregate performance derived from Darshan deviated by less
than 3% from the value reported by IOR in each case. Note

1This situation has since been addressed in Darshan 2.0.0.

64 128
256

512
1024

2048
4096

8192
16384

32768

65536

131072

64 128
256

512
1024

2048
4096

8192
16384

32768

65536

131072

P
er

ce
nt

ag
e

of
 jo

bs

MPI-IO only MPI-IO/POSIXPOSIX only

(Writing)(Reading)
100%

Fig. 2. Interfaces used by jobs as a function of job size.

that reads obtained higher performance than writes, likely due
to current SAN configuration settings that disable write-back
caching but still cache read operations.

IOR, as configured in these examples, issues perfectly
aligned 4 MiB operations concurrently on all processes. Table I
therefore also indicates the approximate maximum MiB/s/CN
that can be observed on Intrepid. The general maximum
performance is bound by the network throughput the ION
can obtain. The BG/P tree network, which connects CN
and ION, supports approximately 700 MiB/s, which gives a
theoretical maximum of 10.94 MiB/s/CN. The ION to storage
network supports approximately 350 MiB/s, which results in
a theoretical maximum of 5.47 MiB/s. With GPFS, a read
workload can take advantage of read-ahead and caching to get
above the storage network maximum. One final caveat is that
the maximum possible MiB/s/CN rate will diminish as the total
performance approaches the limit of the file system [1]. The
theoretical maximum performance for a 40,960-node, 163,840-
process job is 1.59 MiB/s/CN. These metrics are not perfect
representations of I/O performance; however, with the excep-
tion of three jobs that achieved unreasonably high measures
by our estimate, the metric provides meaningful insight into
relative performance for production jobs that cannot otherwise
be explicitly instrumented. Further analysis indicates that the
three outliers exhibited very sparse, uncoordinated I/O that did
not fit the model.

III. APPLICATION TRENDS AND I/O-INTENSIVE PROJECTS

In the time period from January 23 to March 26, Intrepid ex-
ecuted 23,653 jobs that consumed a total of 175 million core-
hours. These jobs were divided into 66 science and engineering
projects (not counting maintenance and administration). Of
these, 37 were INCITE projects, as described in Section II.
The remainder were discretionary projects that are preparing
INCITE applications or porting codes to the Blue Gene/P
architecture. Of that total workload, Darshan instrumented
6,480 (27%) of all jobs and 42 million (24%) of all core-
hours. At least one example from 39 of the 66 projects was
captured.

A. Overall application trends

As part of our analysis we investigated the overall trends
of the applications instrumented through Darshan on Intrepid.
We were interested primarily in two characteristics. First,
we wanted to discover which I/O interfaces were used by

64 128
256

512
1024

2048
4096

8192
16384

32768

65536

131072

64 128
256

512
1024

2048
4096

8192
16384

32768

65536

131072

P
er

ce
nt

ag
e

of
 jo

bs

Shared Unique Partial Shared

(Writing)(Reading)
100%

Fig. 3. I/O strategy used by jobs as a function of job size.

applications at various job sizes. High-level interfaces such
as PnetCDF and HDF5 ease the data management burden
and provide data portability, but it has remained unclear how
many applications utilize these interfaces and how much data
is moved through them. MPI-IO provides useful optimizations
for accessing the parallel file systems deployed at leadership-
class supercomputing centers, but applications may continue
to use POSIX interfaces for a variety of reasons.

Second, we wanted a clearer understanding of the patterns
of access in these applications. We focused on the type of
file access at various job sizes, looking at the frequency and
amount of I/O done to unique files (also known as N:N),
shared files (N:1), and partially shared files (only a subset
of processes perform I/O to the file, N:M where M < N).
Intuitively, applications performing I/O across a large number
of processes will be more likely to use shared files in order to
ease the file management burden that results when a large job
writes 10,000–100,000 files, but it has remained unclear when
applications choose shared files. Also, various studies have
shown that at the largest job sizes, some file systems perform
better under unique file workloads because lock contention
is avoided [12], while others perform better under shared file
workloads because they ease the metadata management burden
[1]. We wanted to see how application performance varied
according to the strategy chosen.

Figures 2 and 3 give an overview of the I/O interfaces
and access patterns used by applications at various job sizes.
We see in Figure 2 that the POSIX interfaces were used
by the majority of jobs and performed the bulk of the I/O,
especially for reading and at smaller process counts. Some
applications used MPI-IO, particularly at the highest process
counts and for applications that primarily wrote data. So few
of the applications in our study used high-level libraries that
they would not have been visible in the graph.

Figure 3 shows that the I/O strategy used by jobs varied con-
siderably depending on the size of the job. Unique files were
the most common access method for small jobs, while partially
shared files were most common access method for large jobs.
In terms of quantity of data, most I/O was performed to
files that were shared or paritially shared. The widespread
use of partially shared files indicates that applications are
not relying on MPI-IO collective buffering optimization but,
rather, are performing their own aggregation by writing and
reading shared files from subsets of processes.

B. I/O-intensive projects

Not all of the 39 projects captured by Darshan were
significant producers or consumers of data. Figure 4 illustrates
how much data was read and written by the ten projects that
moved the most data via Darshan-enabled jobs. The projects
are labeled according to their general application domain. The
first observation from this figure is that that a few projects
moved orders of magnitude more data than most others. The
project with the highest I/O usage, EarthScience, accessed a
total of 3.5 PiB of data. Another notable trend in Figure 4
is that eight of the top ten projects read more data than was
written. This is contrary to findings of previous scientific I/O
workload studies [13]. By categorizing the data by project we
see that the read/write mix varies considerably by application
domain.

Table II lists coverage statistics and application program-
mer interfaces (APIs) used by each of the projects shown
in Figure 4. Darshan instrumented over half of the core-
hours consumed by seven of the ten projects. NuclearPhysics,
Chemistry, and Turbulence3 were the exceptions and may
have generated significantly more I/O activity than is indicated
by Figure 4. The fourth column of Table II shows which
APIs were used directly by applications within each project.
P represents the POSIX open() interface, S represents the
POSIX stream fopen() interface, M represents MPI-IO, and
H represents HDF5. Every project used at least one of the
two POSIX interfaces, while four projects also used MPI-IO.
Energy1 notably utilized all four of HDF5, MPI-IO, POSIX,
and POSIX stream interfaces in its job workload.

This subset of projects also varies in how many files
are used. Figure 5 plots the number of files accessed by
application run according to its processor count for our ten
most I/O-intensive projects. If several application instances
were launched within a single job (as is common on Intrepid),
each instance is shown independently. Reinforcing Figure 3,
we see four rough categories: applications that show an N:N
trend, ones that show an N:1 trend, a group in the middle
exemplified by Turbulence3 that are subsetting (N:M), and
a fourth category of applications operating on no files! The
large number of application runs that operated on zero files is
surprising. Darshan does not track standard output or standard
error. One possible explanation is that projects appear to run

TABLE II
DARSHAN COVERAGE OF HIGHLIGHTED PROJECTS

Job Core-Hour
Project Coverage Coverage APIs
EarthScience 779/1488 10.9/11.8 M S,P
NuclearPhysics 1653/6159 11.3/62.7 M P
Energy1 994/1340 3.7/5.7 M H,M,S,P
Climate 32/130 2.0/3.3 M S
Energy2 384/1433 3.9/4.4 M S,P
Turbulence1 242/467 2.6/4.6 M M,S,P
CombustionPhysics 15/42 1.8/2.4 M S,P
Chemistry 28/144 0.1/0.6 M S
Turbulence2 70/157 0.3/0.3 M M,P
Turbulence3 172/418 0.1/13.3 M M,S,P

API: P = POSIX, S = POSIX stream, M = MPI-IO, H = HDF5

 1

 10

 100

 1000

 10000

EarthScience

NuclearPhysics

Energy1

Clim
ate

Energy2

Turbulence1

Com
bustionPhysics

Chem
istry

Turbulence2

Turbulence3

N
um

be
r

of
 T

iB

Write
Read

Fig. 4. Data moved per project in Darshan-enabled jobs.

1

10

100

1000

10000

100000

1e+06

1e+07

1 4 16 64 256 1024 4096 16384 65536

N
um

be
r
of

 F
ile

s

Number of Processes

EarthScience
Climate

CombustionPhysics
NuclearPhysics

Turbulence3
Turbulence2

Energy1
Energy2

Turbulence1
Chemistry

N:N

N:M

N:1

No Files

Fig. 5. Number of files written by size of application run for our ten most
I/O-intensive projects.

a few debug jobs to run diagnostic or preliminary tests that
write results only to standard out or standard error and then
proceed to run “real” jobs.

Of the N:N applications, some access as many as 100 files
per process. Programs accessing multiple files per process
might need special attention when scaling to full-machine
runs because of challenges in metadata overhead and file
management.

Figure 5 also demonstrates that some projects have both N:1
and N:N jobs. Perhaps the clearest example is NuclearPhysics,
the purple rectangle, about which more will be said in Sec-
tion V-B.

IV. STORAGE UTILIZATION

The previous section provided an overview of how appli-
cations and jobs of varying sizes interacted with the storage
system. In this section we investigate how this interaction
translates into utilization at the storage device and file system
level.

 0

 5

 10

 15

 20

 25

 30

 35

 40

01/23
01/24

01/25
01/26

01/27
01/28

01/29
01/30

01/31
02/01

02/02
02/03

02/04
02/05

02/06
02/07

02/08
02/09

02/10
02/11

02/12
02/13

02/14
02/15

02/16
02/17

02/18
02/19

02/20
02/21

02/22
02/23

02/24
02/25

02/26
02/27

02/28
03/01

03/02
03/03

03/04
03/05

03/06
03/07

03/08
03/09

03/10
03/11

03/12
03/13

03/14
03/15

03/16
03/17

03/18
03/19

03/20
03/21

03/22
03/23

03/24
03/25

03/26

G
B

yt
es

/s

scheduled maintenance

missing data

scheduled maintenance
network maintenance

storage maintenance
EarthScience project usage change

scheduled maintenance
control system maintenance
 and scheduled maintenance

Read
Write

Fig. 6. Aggregate throughput on one-minute intervals.

Figure 6 shows the combined aggregate throughput at the
block device level of Intrepid’s main storage devices from
January 23 to March 26. This includes both GPFS and PVFS
activity. It also includes interactive access from login nodes as
well as analysis access from the Eureka visualization cluster.
Notable lapses in storage activity have been correlated with
various maintenance windows and labeled accordingly. There
were four notable scheduled maintenance days, as well as three
unplanned maintenance windows due to network, storage, or
control system issues. Note that the data ranging from 9:00
am February 1 to 10:00 am February 5 was lost because of
administrative error, but the system was operating normally
during that time.

The peak read throughput achieved over any one minute
interval was 31.7 GiB/s, while the peak write throughput
was 35.0 GiB/s. In previous work, we found that end-to-end
throughput on this system varied depending on the access
pattern [1]. In that study we measured maximum read perfor-
mance from 33 to 47 GiB/s and maximum write performance
from 30 to 40 GiB/s, both using PVFS. The system did not
quite reach these numbers in practice during the interval shown
in Figure 6. The reason may be SAN hardware configuration
changes since the previous study. Our previous study also
took advantage of full system reservations during Intrepid’s
acceptance period, with no resource contention.

From the iostat logs we can also calculate the amount of data
moved over various time intervals. An average of 117.1 TiB
were read per day, and 31.5 TiB were written per day. A total
of 6.8 PiB and 1.8 PiB were read and written over the study
interval, not counting the four missing days of data. Although
reads made up 78.8% of all activity over the course of the
study, this was largely due to the behavior of a single project.
The EarthScience project was noted in Section III for having
the most read-intensive workload of all projects captured by
Darshan. It read over 3.4 PiB of data during the study, or
approximately half of the total read activity on the system.
We investigated that project’s usage activity in scheduler logs
and found that it significantly tapered off around February 25.
This corresponds to a visible change in the read/write mixture
at the same time in Figure 6. For the following two weeks,
reads accounted for only 50.4% of all I/O activity.

We also note that some fraction of read activity was trig-
gered by unaligned write accesses at the application level. Both

 0

 20

 40

 60

 80

 100

 0 5000
 10000

 15000

 20000

 25000

 30000

 35000

 40000
P

er
ce

nt
ag

e
of

 s
ys

te
m

 ti
m

e

MiB/s over 60 second intervals

Max: 35.0 GiB/s

69.2% time < 5% capacity

85.0% time < 10% capacity

99.2% time < 33% capacity

Fig. 7. Cumulative distribution of aggregate storage throughput.

GPFS and PVFS must ultimately perform read/modify/write
operations at the block level in order to modify byte ranges that
do not fall precisely on block boundaries. As we will see in
Section V, unaligned access is common for many applications.

Figure 6 suggests that the I/O activity is also bursty. To
quantify this “burstiness,” we generated a cumulative distribu-
tion function (CDF) of the combined read and write throughput
on the system for all 63,211 one-minute intervals recorded
from iostat. The result is shown in Figure 7. The average
total throughput was 1,984 MiB/s. The peak total throughput
was 35,890 MiB/s. For 98% of the time, the I/O system was
utilized at less than 33% of peak I/O bandwidth. This matches
with the common understanding of “burstiness” of I/O at these
scales. Because leadership-class I/O systems are provisioned
to provide a very high peak bandwidth for checkpointing, it
follows that during computation phases the I/O system will be
mostly idle. An untapped opportunity exists for storage and
I/O architectures that can take advantage of these idle periods.

A. File system contents

Despite the quantity of data that was transferred through
the storage system on Intrepid, a surprising amount of it was
stored in relatively small files at the file system level. Figure 8
illustrates the cumulative distribution function of file sizes in
March 2010. The most popular size range was 64 KiB to 128
KiB, with over 71 million files. Of all files, 86% were under
1 MiB, 95% were under 2 MB, and 99.8% were under 128
MB. The largest file was exactly 16 TiB.

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

32 KiB

1 M
iB

32 M
iB

1 GiB
32 GiB

1 TiB

P
er

ce
nt

ag
e

of
 fi

le
s

All
without EarthScience files

Fig. 8. Cumulative distribution of file sizes, March 2010.

Closer investigation, however, revealed that a single project,
EarthScience, was significantly altering the file size character-
istics. The second line in Figure 8 shows what the distribution
of file sizes would have been without counting the files
belonging to that project. Without EarthScience’s files, the
most popular file size would have been 512 KiB to 1 MiB
and only 77% of the files would have been under 1 MiB in
size.

We can also observe how the file systems changed over the
study interval by comparing fsstats results from the beginning
and end of the two-month study. Table III shows growth of the
primary file systems on Intrepid, in terms of both total capacity
and number of files. Over the study period, the number of
files doubled. Just as in the static analysis, however, this
growth was largely the result of the EarthScience project data.
EarthScience was responsible for 88% of the additional files
created during the study period but generated only 15% of
the new data by capacity. If the number of files continues to
increase at the same rate, the file system will reach 1 billion
files in September, 2011.

B. Overwriting data

Over 80% of the data stored on Intrepid has not been
modified in over 64 days, and over 70% of it has not been
modified in over 128 days. These results suggest that data is
rarely overwritten once it is stored on the file system. Darshan
characterization supports this observation as well. We found
that of the 209.5 million files written by jobs instrumented with
Darshan, 99.3% either were created by the job or were empty
before the job started. This data suggests that replication,
compression, and hierarchical data management algorithms
that take advantage of the presence of infrequently modified
files are applicable in this environment.

We note that the jobs characterized by Darshan wrote more

TABLE III
FILE SYSTEM STATISTICS

Total EarthScience
Date Usage Files Usage Files
January 1.14 PB 96.2 M 274.4 TB 12.3 M
March 1.28 PB 191.4 M 295.1 TB 96.2 M
Change +12.3% +99.0% +7.5% +682.1%

 0

 1

 2

 3

 4

 5

 6

EarthScience

NuclearPhysics

Energy1

Clim
ate

Energy2

Turbulence1

Com
bustionPhysics

Chem
istry

Turbulence2

Turbulence3

M
iB

/s
/C

N

Fig. 10. Performance per project in large Darshan-enabled jobs (EarthScience
outliers are not shown). Peak performance falls between 1.6 MiB/s/CN and
10.9 MiB/s/CN, depending on job size and other active jobs.

files in the two-month study than were actually present in the
file system at the end of the study. This fact, in conjunction
with the earlier observations, indicates that files are either
deleted within a relatively short time frame or else stored
unchanged for extended periods of time.

V. I/O CHARACTERISTICS BY PROJECT

We have established that the I/O workload on Intrepid
consists of a variety of access patterns and file usage strategies
and that the underlying storage system experiences bursts of
I/O demand. In this section we explore in greater detail how
storage access characteristics vary by application domain and
how those characteristics correlate with I/O performance.

Figure 10 is a box plot of performance measured by using
the MiB/s/CN metric outlined in Section II-D. We have filtered
the jobs captured by Darshan to include only those that used
at least 1,024 processes and moved at least 500 MiB of data.
This approach eliminates noise from jobs that moved trivial
amounts of data. All statistics shown in the remainder of
this study are filtered by the same criteria. For each project
in Figure 10, we have shown the minimum, median, and
maximum, as well as the Q1 and Q3 quartiles. Some projects
exhibited very consistent performance, while others varied
over a relatively wide range. Very few jobs from any project
approached the maximum values established in Section II-D.

Table IV summarizes a set of key storage access char-
acteristics as averaged across jobs within that project. The
MiB/s/CN and metadata overhead are computed as described
in Section II-D. The second column shows percentage of
cumulative I/O function time (across all processes) that was
spent performing metadata operations rather than read() or
write() operations. This value is much higher than expected
in some cases because of the GPFS file system flushing writes
to small files at close() time, because Darshan counts all
close() operations as metadata. The other columns show
the number of files accessed and created per MPI process, the
percentage of sequential and aligned accesses, and the amount
of data moved per process. Often accesses by a given process
are highly sequential, as has been seen in previous studies
[13]. Figure 9 illustrates the access sizes used by each project

TABLE IV
AVERAGE I/O CHARACTERISTICS OF LARGE JOBS BY PROJECT

Project Cumulative Files Creates MiB
MiB/s/CN md cost per proc per proc seq. aligned per proc

EarthScience 0.69 95% 140.67 98.87 64% 97% 1779.48
NuclearPhysics 1.53 55% 1.72 0.63 100% 0% 234.57
Energy1 0.77 31% 0.26 0.16 87% 36% 66.35
Climate 0.31 82% 3.17 2.44 97% 5% 1034.92
Energy2 0.44 3% 0.02 0.01 86% 11% 24.49
Turbulence1 0.54 64% 0.26 0.13 77% 25% 117.92
CombustionPhysics 1.34 67% 6.74 2.73 100% 0% 657.37
Chemistry 0.86 21% 0.20 0.18 42% 47% 321.36
Turbulence2 1.16 81% 0.53 0.03 67% 50% 37.36
Turbulence3 0.58 1% 0.03 0.01 100% 1% 40.40

 0

 0.2

 0.4

 0.6

 0.8

 1

0-100
100-1K

1K-10K

10K-100K

100K-1M

1M
-4M

4M
-10M

10M
-100M

100M
-1G

EarthScience

0-100
100-1K

1K-10K

10K-100K

100K-1M

1M
-4M

4M
-10M

10M
-100M

100M
-1G

NuclearPhysics

0-100
100-1K

1K-10K

10K-100K

100K-1M

1M
-4M

4M
-10M

10M
-100M

100M
-1G

Energy1

Write
Read

0-100
100-1K

1K-10K

10K-100K

100K-1M

1M
-4M

4M
-10M

10M
-100M

100M
-1G

Climate

0-100
100-1K

1K-10K

10K-100K

100K-1M

1M
-4M

4M
-10M

10M
-100M

100M
-1G

Energy2

0

0.2

0.4

0.6

0.8

1

0-100
100-1K

1K-10K

10K-100K

100K-1M

1M
-4M

4M
-10M

10M
-100M

100M
-1G

Turbulence1

0-100
100-1K

1K-10K

10K-100K

100K-1M

1M
-4M

4M
-10M

10M
-100M

100M
-1G

CombustionPhysics

0-100
100-1K

1K-10K

10K-100K

100K-1M

1M
-4M

4M
-10M

10M
-100M

100M
-1G

Chemistry

0-100
100-1K

1K-10K

10K-100K

100K-1M

1M
-4M

4M
-10M

10M
-100M

100M
-1G

Turbulence2

0-100
100-1K

1K-10K

10K-100K

100K-1M

1M
-4M

4M
-10M

10M
-100M

100M
-1G

Turbulence3

Fig. 9. Access sizes of large jobs by project.

in greater detail, using histograms to represent the percentages
of accesses that fell within each range.

The remainder of this section will refer back to Table IV
and Figure 9 as we explore the characteristics of each project
in greater depth.

A. EarthScience

The EarthScience project has already featured prominently
in previous sections, because it dominated both the read
activity and number of files stored on Intrepid during the study
interval. Despite the high level of I/O usage, however, Earth-
Science ranked near the low range of median I/O performance.
Other than the three outliers discussed earlier, the performance
is consistent, with an interquartile range (IQR) of only 0.17
MiB/s/CN. Further inspection indicated that the EarthScience
workload is dominated by 450 nearly identical jobs, each of
which utilized 4,096 processes. These jobs were often further
subdivided into a sequence of up to 22 repeated instances of
the same application within a job allocation. Each instance
accessed approximately 57,000 files, leading some jobs to
access a total of more than 1 million distinct files over the
lifetime of the job.

The EarthScience project read over 86 times as much data
as it wrote. The data that it did write, however, was broken
into a large number of newly created files. Of the 141 files
accessed per process on average, 99 were created and written
by the job itself. As noted in Section IV, this project alone
contributed over 96 million files to the 191.4 million stored on

Intrepid at the end of the study. The direct result of splitting
data into so many files is that each job spent more of its I/O
time performing metadata operations than actually reading or
writing application data. Over 20 TiB of data were written into
files averaging 109 KiB each in size, leaving the file system
little opportunity to amortize metadata overhead. The apparent
metadata cost is exaggerated somewhat by I/O time that is
attributed to close() rather than write(), but that doesn’t
change the fact this metadata overhead is a limiting factor in
overall I/O efficiency for the project.

B. NuclearPhysics

NuclearPhysics exhibited the widest IQR of job perfor-
mance of any of the ten most I/O-intensive projects. This
variability was not caused by fluctuations in performance
of a single application. Two applications with different I/O
characteristics were run by users as part of this project. In
one set, 809 nearly identical jobs accounted for the upper
quartile and were among the most efficient of any frequently
executed application during the study. In the other set, 811
jobs accounted for the lower quartile. This example illustrates
that access characteristics may vary significantly even across
applications from the same domain on the same system.

The faster of the two applications utilized a partially
shared file access pattern (N:M) and was atypical among
jobs observed in this study because many of its files were
both read and written to during the same job. The metadata
overhead of creating and writing multiple files was amortized

by the quantity of I/O performed to each file. An example
job read 1.38 TiB of data and wrote 449.38 GiB of data.
This job is also a clear example of a behavior that was first
speculated in Section III-A, namely, that some applications are
implementing their own form of I/O aggregation rather than
using the collective functionality provided by MPI-IO. This
particular application used POSIX exclusively and was run
with 4096 processes, but the first 512 MPI ranks performed
all of the I/O for each job.

The slower of the two applications that dominated this
project presents an example of an application that performs
“rank 0” I/O, in which a single process is responsible for all
of the I/O for the job. In this case the jobs were either 2,048
or 4,096 processes in size. The fact that all I/O was performed
by a single rank resulted in a MiB/s/CN score as low as 0.2
in most cases. At first glance this appears to be very poor
I/O behavior, but in practice these jobs read only 4 GiB of
data, and the time to read that data with one process often
constituted only 1% of the run time for this application. So
while the storage access characteristics were poor, it will likely
not be a significant problem unless the application is scaled
to a larger problem size. This application accounted for the
earlier observation in Figure 5 that NuclearPhysics exhibited
both N:M and N:1 styles of access patterns.

C. Energy1

The performance fluctuation in the Energy1 project results
from variations within a single application that used different
file systems, job sizes, APIs, data sizes, and file sharing strate-
gies. Discussions with the scientists involved in the project
revealed that this behavior was the result of experimental I/O
benchmarking and does not represent production application
behavior. However, it was interesting to capture an application-
oriented I/O tuning experiment in progress.

D. Climate

The Climate project executed 30 jobs. The jobs tended
to use co-processor mode, which means 2 MPI processes
per node with 2 threads per MPI process. The application
performance was likely dominated by three factors. One, each
process created two files, translating to a higher metadata
overhead. Two, the application performed a seek for every
read/write operation. All seeks need to be forwarded to the
ION to be processed, making the calls unusually expensive
relative to a cluster system; 82% of I/O time was spent in
metadata. Three, write operations were only 64 KiB when the
file system block size is 4 MiB. Writes this small are not
efficient on this system.

E. Energy2

The Energy2 project executed 58 jobs at one of two sizes,
2,048 or 4,096 processes. The overall time spent in I/O as a
whole was very small (less than 1%). The I/O performance of
this project was low compared to the others even though it had
low overhead for metadata. The performance loss was due to
small independent writes (less than 10 KiB) that occurred only

TABLE V
TURBULENCE1 PERFORMANCE BY JOB

Job Procs Performance Metadata Key Access
(MiB/s/CN) (%) Size

A 8192 2.92 28% 74KiB
B 2048 1.12 2% 20B (w)
C 1024 0.64 6% < 20B (w)
D 4096 0.38 41% < 20B (w)
E 2048 0.11 36% < 700B (r+w)
F 32768 0.0009 1% 4B (r)

on rank 0. This project does utilize a single, shared file for
reading, in which all processes read significantly more bytes
than are written, and at a larger access size, producing very
good performance. Given the small amount of time spent in
I/O as compared to the overall application run-time and the
minimal number of bytes, maximizing the write performance
doesn’t seem to be a priority.

F. Turbulence1

The Turbulence project sample contained 118 diverse jobs.
The jobs were run by three users, with process counts between
1,024 and 32,768. Each user ran a few different applications,
which led to a wide performance range for all applications.
Table V details example jobs at the different performance
scales.

All of these jobs had a common I/O profile. Each appli-
cation used shared files as well as unique files on a file-
per-process basis. For applications that needed to read/write
more substantial amounts of a data, a single shared file was
used with a 4 MiB access size. The bulk of the accesses,
however, were very small read or write operations. As a
result, performance was determined by the effectiveness of
either collective I/O or POSIX stream operations to combine
these small I/O operations into larger requests. The fastest job
performed the bulk of its I/O to shared files using POSIX
read operations using the fast scratch file system. The access
size was not particularly large but probably benefited from
the GPFS read-ahead caching. The slowest application used
a large number of independent POSIX reads of a very small
access size, on the order of four bytes to the slower home file
system.

G. CombustionPhysics

The CombustionPhysics project comprised only 11 jobs in
the sample based on the selection criteria. Within those 11
were a wide variety of different-sized jobs. The size of the
job had a significant impact on the I/O rate.

This project appeared to be studying strong-scaling since
the total number of bytes transferred for each job was similar
regardless of size. Hence, the bytes per process transferred
were smaller at each larger job size. At the two smaller node
counts (1,024 and 2,048) the total I/O time for the job was
small (< 1%) compared to the total compute time. At the
4,096 node count, however, the total I/O time became 40%
of the run time, and the percentage of time spent in metadata
exploded to 35%. At each larger node count the percentage of

TABLE VI
COMBUSTIONPHYSICS PERFORMANCE BY JOB SIZE

Nodes Jobs Performance
MiB/s/CN

1024 3 3.0
2048 3 1.3
4096 2 0.36
8192 1 0.08
16384 1 0.03
32768 1 0.01

I/O time spent in metadata increases, eventually topping out
at 99%.

Table IV indicates that this project created about three files
per process on average. This I/O strategy did not scale well on
Intrepid for higher processor counts and smaller amounts of
data per process (see Table VI). In Section VI we will revisit
this project and evaluate the impact of various I/O tuning
strategies that were guided by the findings of our integrated
I/O characterization methods.

H. Chemistry

All of the data captured for the Chemistry project corre-
sponds to a single application. The bulk data accesses from
the application were all perfectly aligned to the file system
at 4 MiB. The metadata overhead was also low, because the
majority of jobs accessed fewer than 10 total files regardless
of job size. The I/O efficiency is poor despite these character-
istics, however. The reason is that (with one exception) all
of the Chemistry jobs captured by Darshan performed I/O
exclusively from a single process, regardless of the size of
the job. These jobs achieved performance similar to the lower
quartile jobs of the NuclearPhysics project that utilized the
same strategy.

One instance of the same application was executed with
notably different characteristics. The job size in that case was
2,048, and half of the processes were involved in perform-
ing I/O. As in the upper quartile NuclearPhysics cases, the
application appears to be manually performing aggregation
on behalf of the other processes, as no MPI-IO is involved.
The 1,024 I/O tasks combined to read 10 TiB of data and
write 1.35 TiB of data. A unique file was used by each
process, and all data was perfectly aligned. The application
was therefore able to sustain I/O for an extended period with
no significant metadata or misalignment overhead. This job
achieved the highest observed efficiency of jobs analyzed in
the case studies.

I. Turbulence2

The Turbulence2 project illustrates another example where
the job variability arose from differences in the performance of
a single application at different scales. The jobs took very little
run time, with several examples executing for less than one
minute. There is an unusual mix of access sizes, as illustrated
in Figure 9. Writes were dominated by very large access sizes,
but many reads were less than 100 bytes each. This strategy
performed best at relatively small job sizes of 2,048 or 2,304
processes. The same application did not fare was well when

scaled up to 65,536 or 131,072 processes, though the run time
was still only a few minutes. This application used MPI-IO
but did not leverage collective operations or derived datatypes.
The I/O-intensive jobs in this project may have been the result
of a benchmarking effort, as only 40 jobs met the filtering
criteria used in this section. All 40 were the same application
executed with different parameters and at different scales.

J. Turbulence3

The Turbulence3 project consisted of 49 jobs. There were
a few common sizes of 1,024, 1,600 and 2,048 processes as
well as two 8,192 process jobs. The jobs have a similar pattern
of I/O. There is a mix of MPI independent reads and writes
at a specific request size. The I/O also occurs only from a
subset of the MPI ranks, either 4 or 8 ranks. The lowest-
performing job used 16 KiB MPI-IO independent reads and
writes. The performance increased as jobs used larger request
sizes, going up to 320 KiB and 512 KiB request sizes. The
highest performing job used a 320 KiB request size but had
more than double the number of reads as writes. The reads
would be able to take advantage of GPFS read-ahead and
caching.

VI. APPLICATION TUNING CASE STUDY

At the conclusion of the I/O study interval, we revisited the
CombustionPhysics project, analyzed its behavior in greater
detail with Darshan, and optimized it for improved I/O per-
formance. As noted earlier, production jobs from this project
ranged from 1,024 to 32,768 nodes but achieved progressively
worse I/O performance as the scale increased. This application
used OpenMP with four threads per node to process an AMR
data set ranging from 210 to 213 data points. To simplify the
tuning process, we decided to investigate the I/O of a similar
but smaller application example from the CombustionPhysics
project. This target application utilized the same OpenMP
configuration and the same I/O stratey, and likewise achieved
poor I/O performance at scale. However, its data set is a
uniform 29 mesh that produces fixed-size checkpoints of
approximately 20 GiB each. We focused on the 8,192 node
(32,768 cores) example of this application as a test case and
configured it to generate two checkpoints.

This application was originally tuned for a high-
performance computing system that achieved optimal perfor-
mance by using a unique file for the checkpoint data on each
node. As in examples shown earlier in this work, however, we
found that on Intrepid this approach led to I/O behavior that
was dominated by metadata overhead. According to Darshan,
the total I/O time to dump 40 GiB of data was approximately
728 seconds, nearly all of which was attributed to metadata
activity. As an experiment, we precreated the output files for
the application in order to observe the change in I/O behavior
when file creation cost was eliminated from the run time. This
approach reduced the total I/O time to 25 seconds, a factor of
28 improvement over the original execution. Such an approach
is not feasible for production use, however: file precreation is

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

In
itia

l ve
rsio

n

P
re

cre
a
te

d
 file

s

M
P
I-IO

M
iB

/s
/C

N

Fig. 11. CombustionPhysics per node performance with 8,192 nodes (32,768
cores).

a time-consuming process, and the number of checkpoints that
will be generated is not known in advance.

To reduce the metadata overhead in a more practical manner,
we decided to modify the application to dump its checkpoint
data to a single, shared file. Rather than dumping data us-
ing independent POSIX operations, however, we updated the
application to use MPI-IO collective operations. By doing
so, the application not only reduced metadata overhead but
also enabled a range of transparent MPI-IO optimizations. Of
particular importance for strong scaling algorithms, MPI-IO
can aggregate access to shared files in order to mitigate the
affect of smaller writes at scale. Figure 11 shows the per
node I/O performance achieved by all three versions of the
application, using the same MiB/s/CN metric used in the two-
month system study. The MPI-IO version achieved a factor
of 41 improvement over the original application, dumping
two time steps in approximately 17 seconds. Darshan analysis
confirmed that all application-level writes were between 1 and
4 MiB in size, as in the original example. However, MPI-
IO aggregated these into 16 MiB writes at the file system
level. The total number of write operations processed by
the file system was therefore reduced from 16,388 to 4,096,
resulting in more efficient use of available resources and faster
turnaround for science runs.

VII. RELATED WORK

A number of past studies have investigated the I/O access
patterns of scientific applications. Nieuwejaar et al. initiated
the influential Charisma project in 1993 to study multipro-
cessor I/O workloads [13]. This culminated in an analysis of
three weeks of data from two high-performance computing
systems with up to 512 processes. Their study identified access
pattern characteristics and established terminology to describe
them. Smirni and Reed analyzed five representative scientific
applications with up to 64 processes [14]. The Pablo envi-
ronment [15] was used for trace capture in that work. While
both Charisma and Pablo measured application characteristics
in a manner similar to our work, neither was performed at
a comparable scale or correlated to system-level I/O activity.
Wang et al. investigated synthetic benchmarks and two physics
applications with up to 1,620 processes and found similar
results [16]. Uselton et al. developed a statistical approach

to I/O characterization in a more recent study [17]. They
leveraged IPM [18] for the raw trace capture of two scientific
applications with up to 10,240 processes on two different
platforms. Statistical techniques were then used to identify
and resolve I/O bottlenecks in each application. These studies
utilized complete traces that focused on specific applications
rather than on a general production workload.

Other recent system-level studies have focused on large
network file systems. In an investigation of two CIFS file
systems that hosted data for 1,500 industry employees, Leung
et al. discovered a number of recent trends in I/O behavior [6].
Anderson presented a study of NFS workloads with up to
1,634 clients [5]. These studies were similar in scope to our
work but were not performed in a high-performance computing
environment.

A wide variety of tools are available for capturing and
analyzing I/O access from individual parallel applications,
including IPM, HPCT-IO, LANL-Trace, IOT, and mpiP [18],
[19], [20], [21], [22]. Multiple I/O tracing mechanisms were
surveyed by Konwinski et al [23]. Klundt, Weston, and Ward
have also investigated tracing of user-level I/O libraries on
lightweight kernels [24].

VIII. CONCLUSIONS

In this work we have investigated critical questions about
the nature of storage access characteristics on leadership-class
machines. We performed our investigation over two months
of production time on Intrepid, a 557-teraflop IBM Blue
Gene/P deployed at Argonne National Laboratory. Intrepid’s
storage system contained over 191 million files and moved
an average of nearly 150 TiB of data per day. We captured
detailed application-level I/O characteristics of 27% of all
jobs executed on Intrepid, ranging in size from 1 to 163,840
processes. In doing so, we demonstrated that it is possible
to instrument several aspects of storage systems at full scale
without interfering with production users. We have also devel-
oped a performance metric that enables relative comparison of
a wide variety of production applications.

The results of this study have led to findings that will
influence future research direction as well as design of future
I/O subsystems to be used at the ALCF. We found that POSIX
is still heavily used by many applications, though on this
system there was no discernable performance advantage in that
choice. MPI-IO, HDF5, and Parallel NetCDF are also used by
the top 10 I/O producers and consumers. The ALCF will need
to continue providing support for all these interfaces.

Shared or partially shared file usage becomes the predomi-
nant method of file access at the 16,384-processor mark on In-
trepid. This job size, and larger, will be increasingly common
on the next generation of computing platforms. This implies
that the ALCF should invest in helping applications transition
to shared or paritially shared file models. We demonstrated the
benefit of this approach through a case study of I/O tuning in
the CombustionPhysics project, one of the most active INCITE
projects on Intrepid in terms of data usage.

From the aspect of I/O system design, we found two major
items of interest. We were able to verify the “burstiness”
of I/O on Intrepid, indicating that we have a significant
opportunity to utilize idle storage resources for tasks such as
performance diagnosis. In addition, we found that files are
rarely overwritten once they are closed. This suggests that
there is an opportunity to leverage hierarchical storage for
more cost-effective storage of infrequently accessed data. We
also found that while I/O characterization data was easy to
use on a per job basis, analyzing and summarizing many
jobs in aggregate were more difficult than anticipated. As
a result, we have enhanced Darshan in the 2.0.0 release to
streamline the analysis process 2. For example, more shared
file statistics (such as minimum, maximum, and variance
among participating processes) are now computed at run time.

We compared storage access characteristics of different sci-
entific application domains and found an extraordinary variety
of both data usage and application-level I/O performance.
Several distinct I/O strategies were identified, including shared
file usage, unique file usage, rank 0 I/O, and examples of
both weak and strong scaling of data. We also discovered
examples of applications that appeared to be utilizing custom
aggregation algorithms without the assistance of MPI-IO.
In general we found that metadata overhead, small access
sizes, and I/O imbalance were the most significant barriers to
I/O performance. However, no single technique employed by
applications emerged overwhelmingly as the most successful.
In future work we would like to perform similar studies at
other sites that may offer a different collection of scientific
computing applications to compare and contrast.

ACKNOWLEDGMENTS

This work was supported by Office of Advanced Scientific
Computing Research, Office of Science, U.S. Dept. of Energy,
under Contract DE-AC02-06CH11357.

This research used resources of the Argonne Leadership
Computing Facility at Argonne National Laboratory, which
is supported by the Office of Science of the U.S. Department
of Energy under contract DE-AC02-06CH11357.

REFERENCES

[1] S. Lang, P. Carns, R. Latham, R. Ross, K. Harms, and W. Allcock, “I/O
performance challenges at leadership scale,” in SC ’09: Proceedings of
the Conference on High Performance Computing Networking, Storage
and Analysis. New York, NY, USA: ACM, 2009, pp. 1–12.

[2] G. R. Ganger, “Generating representative synthetic workloads: An
unsolved problem,” in Proceedings of the Computer Measurement Group
(CMG) Conference, 1995, pp. 1263–1269.

[3] A. Traeger, E. Zadok, N. Joukov, and C. P. Wright, “A nine year study
of file system and storage benchmarking,” Trans. Storage, vol. 4, no. 2,
pp. 1–56, 2008.

[4] N. Agrawal, A. C. Arpaci-Dusseau, and R. H. Arpaci-Dusseau, “To-
wards realistic file-system benchmarks with CodeMRI,” SIGMETRICS
Perform. Eval. Rev., vol. 36, no. 2, pp. 52–57, 2008.

[5] E. Anderson, “Capture, conversion, and analysis of an intense NFS
workload,” in FAST ’09: Proccedings of the 7th conference on File and
storage technologies. Berkeley, CA, USA: USENIX Association, 2009,
pp. 139–152.

2http://www.mcs.anl.gov/research/projects/darshan/

[6] A. W. Leung, S. Pasupathy, G. Goodson, and E. L. Miller,
“Measurement and analysis of large-scale network file system
workloads,” in Proceedings of the 2008 USENIX Technical Conference.
Berkeley, CA, USA: USENIX Association, 2008, pp. 213–226. [Online].
Available: http://portal.acm.org/citation.cfm?id=1404014.1404030

[7] P. Carns, R. Latham, R. Ross, K. Iskra, S. Lang, and K. Riley, “24/7
characterization of petascale I/O workloads,” in Proceedings of 2009
Workshop on Interfaces and Architectures for Scientific Data Storage,
September 2009.

[8] “U.S. Department of Energy INCITE program,”
http://www.er.doe.gov/ascr/incite/.

[9] F. Schmuck and R. Haskin, “GPFS: A shared-disk file system for large
computing clusters,” in Proceedings of the FAST 2002 Conference on
File and Storage Technologies, January 2002.

[10] S. Godard, “SYSSTAT utilities home page,” http://pagesperso-
orange.fr/sebastien.godard/.

[11] S. Dayal, “Characterizing HEC storage systems at rest,” Carnegie Mellon
University Parallel Data Lab, Tech. Rep. CMU-PDL-08-109, 2008.

[12] W. Liao and A. Choudhary, “Dynamically adapting file domain partition-
ing methods for collective I/O based on underlying parallel file system
locking protocols,” in Proceedings of the 2008 ACM/IEEE conference
on Supercomputing. IEEE Press, Piscataway, NJ, 2008.

[13] N. Nieuwejaar, D. Kotz, A. Purakayastha, C. S. Ellis, and
M. Best, “File-access characteristics of parallel scientific workloads,”
IEEE Transactions on Parallel and Distributed Systems, vol. 7,
no. 10, pp. 1075–1089, October 1996. [Online]. Available:
http://www.computer.org/tpds/td1996/l1075abs.htm.

[14] E. Smirni and D. Reed, “Workload characterization of input/output
intensive parallel applications,” in Proceedings of the Conference
on Modelling Techniques and Tools for Computer Performance
Evaluation, ser. Lecture Notes in Computer Science, vol. 1245.
Springer-Verlag, June 1997, pp. 169–180. [Online]. Available:
http://vibes.cs.uiuc.edu/Publications/Papers/Tools97.ps.gz

[15] D. A. Reed, R. A. Aydt, R. J. Noe, P. C. Roth, K. A. Shields, B. W.
Schwartz, and L. F. Tavera, “Scalable performance analysis: The Pablo
performance analysis environment,” in Proceedings of the Scalable
parallel libraries conference. IEEE Computer Society, 1993, pp. 104–
113.

[16] F. Wang, Q. Xin, B. Hong, S. A. Brandt, E. L. Miller, D. D. E. Long, and
T. T. Mclarty, “File system workload analysis for large scale scientific
computing applications,” in Proceedings of the 21st IEEE / 12th NASA
Goddard Conference on Mass Storage Systems and Technologies, 2004,
pp. 139–152.

[17] A. Uselton, M. Hawison, N. Wright, D. Skinner, J. Shalf, L. Oliker,
N. Keen, and K. Karavanic, “Parallel I/O performance: From events to
ensembles,” in Proceedings of the 24th IEEE International Parallel and
Distributed Processing Symposium (To Appear), 2010.

[18] N. J. Wright, W. Pfeiffer, and A. Snavely, “Characterizing parallel scal-
ing of scientific applications using IPM,” in The 10th LCI International
Conference on High-Performance Clustered Computing, 2009.

[19] S. Seelam, I.-H. Chung, D.-Y. Hong, H.-F. Wen, and H. Yu, “Early
experiences in application level I/O tracing on Blue Gene systems,” in
Proceedings of the 2008 IEEE International Parallel and Distributed
Processing Symposium, 2008.

[20] “HPC-5 open source software projects: LANL-Trace,”
http://institute.lanl.gov/data/software/#lanl-trace.

[21] P. C. Roth, “Characterizing the I/O behavior of scientific applications
on the Cray XT,” in PDSW ’07: Proceedings of the 2nd International
Workshop on Petascale Data Storage. New York, NY, USA: ACM,
2007, pp. 50–55.

[22] J. S. Vetter and M. O. McCracken, “Statistical scalability analysis
of communication operations in distributed applications,” SIGPLAN
Notices, vol. 36, no. 7, pp. 123–132, 2001.

[23] A. Konwinski, J. Bent, J. Nunez, and M. Quist, “Towards an I/O
tracing framework taxonomy,” in PDSW ’07: Proceedings of the 2nd
international workshop on Petascale data storage. New York, NY,
USA: ACM, 2007, pp. 56–62.

[24] R. Klundt, M. Weston, and L. Ward, “I/O tracing on Catamount,” Sandia
National Laboratory, Tech. Rep. SAND2008-3684, 2008.

The submitted manuscript has been created by UChicago
Argonne, LLC, Operator of Argonne National Laboratory
(“Argonne”). Argonne, a U.S. Department of Energy Office
of Science laboratory, is operated under Contract No. DE-
AC02-06CH11357. The U.S. Government retains for itself,
and others acting on its behalf, a paid-up nonexclusive,
irrevocable worldwide license in said article to reproduce,
prepare derivative works, distribute copies to the public, and
perform publicly and display publicly, by or on behalf of the
Government.

